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Abstract

The signal recognition particle (SRP) and its receptor compose a uni-
versally conserved and essential cellular machinery that couples the syn-
thesis of nascent proteins to their proper membrane localization. The
past decade has witnessed an explosion in in-depth mechanistic investi-
gations of this targeting machine at increasingly higher resolutions. In
this review, we summarize recent work that elucidates how the SRP and
SRP receptor interact with the cargo protein and the target membrane,
respectively, and how these interactions are coupled to a novel GTPase
cycle in the SRP·SRP receptor complex to provide the driving force
and enhance the fidelity of this fundamental cellular pathway. We also
discuss emerging frontiers in which important questions remain to be
addressed.
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SRP: signal
recognition particle
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INTRODUCTION

Proper localization of proteins to their correct
cellular destinations is essential for sustaining
order and organization in all cells. Roughly
30% of the proteome is initially destined for
the eukaryotic endoplasmic reticulum (ER)
or the bacterial plasma membrane. Although

the precise number of proteins remains to be
determined, it is generally recognized that the
majority of these proteins are delivered by the
signal recognition particle (SRP), a universally
conserved protein-targeting machine (1–4).
Thirty years ago, the components and pathway
for SRP-dependent protein targeting were first
elucidated in mammalian cells through in vitro
reconstitutions in cell extracts (5–9). The iden-
tification of the SRP homolog in prokaryotes
a decade later further highlighted the salient,
universally conserved features of this pathway
(10–12). The biochemical accessibility of the
bacterial SRP system has enabled in-depth
mechanistic investigations of this pathway,
allowing us to understand its underlying
molecular mechanism at unprecedented depth
and resolution.

OVERVIEW OF SRP-DEPENDENT
PROTEIN TARGETING

With the exception of the chloroplast SRP (see
Chloroplast SRP: A Unique Posttranslational
SRP, below), SRP-mediated protein targeting
is a strictly cotranslational process that begins
when a nascent polypeptide destined for the
ER or plasma membrane emerges from the
ribosome (Figure 1a). The N-terminal signal
sequence on the nascent polypeptide serves
as the signal that allows the ribosome·nascent
chain complex (termed the RNC or cargo) to
engage the SRP and, through interaction with
the SRP receptor (SR), to be delivered to the
vicinity of the Sec61p (or SecYEG in prokary-
otes) translocon at the target membrane
(Figure 1a). There, the RNC is transferred to
the Sec61p/SecYEG machinery, which either
integrates the nascent polypeptide into the lipid
bilayer or translocates it across the membrane
to enter the secretory pathway. Meanwhile, the
SRP and SR dissociate from each other to medi-
ate additional rounds of targeting (Figure 1a).

The size and composition of the SRP
vary widely across species. Surprisingly, the
bacterial SRP and SR, though highly simpli-
fied compared with those in eukaryotes, can
replace their mammalian homologs to mediate
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Protein targeting:
the process of
delivering a newly
synthesized protein to
specific organelles in
the cell

efficient targeting of mammalian proteins
to the ER (11, 13). This demonstrates the
remarkable evolutionary conservation of the
SRP pathway and shows that the bacterial
machinery can represent the functional core
of the SRP necessary and sufficient for protein
targeting. This provides a useful starting point
for mechanistic dissections.

The bacterial SRP contains the universally
conserved SRP54 protein (called Ffh in bacte-
ria) bound to the 4.5S SRP RNA. Ffh has two
structurally and functionally distinct domains
(Figure 1b, left): a methionine-rich M-domain
that recognizes the signal sequence and binds,
with picomolar affinity, to the SRP RNA (14–
16), and a special GTPase or NG domain that
interacts with a highly homologous NG domain
in the SR (Figure 1b) (17, 18). The bacterial SR,
called FtsY, also contains an N-terminal acidic
A domain that allows this receptor to peripher-
ally associate with the membrane (19, 20).

The cotranslational SRP pathway mini-
mizes the aggregation or misfolding of nascent
proteins before they arrive at their cellular des-
tination and is therefore highly advantageous
in the targeted delivery of membrane and
secretory proteins. Nevertheless, an increasing
number of posttranslational protein-targeting
pathways have been identified (Figure 1a, left).
The best characterized thus far is the bacte-
rial SecB/A system, which delivers bacterial
secretory and outer-membrane proteins to the
SecYEG complex and, through the ATPase
cycles of SecA, drives the translocation of sub-
strate proteins across the SecYEG translocon
(1, 2). In yeast, the Sec62/63/71/72 system is a
major pathway that mediates protein secretion
(21, 22). Additional targeting pathways have
been found, including the twin-arginine-
translocase (Tat) system, heat shock protein
70 (Hsp70)-dependent pathways, and most
recently the guided entry of tail-anchored
proteins (GET) pathway (Figure 1a, left path)
(1, 2, 23–26).

Despite the divergence of targeting ma-
chineries, the SRP pathway illustrates several
key features that are general to almost all
protein-targeting processes: (a) the cellular

Ribosome•nascent
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Signal sequence

Signal
recognition
particle

Signal
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particle
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Other
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Figure 1
Overview of the pathways and components of the signal recognition particle
(SRP). (a) Multiple pathways deliver newly synthesized proteins to the
endoplasmic reticulum or plasma membrane, with the SRP pathway mediating
the cotranslational targeting of translating ribosomes (right) and
posttranslational targeting machineries mediating the targeting of proteins
released from the ribosome. (b) Domain structures of the ribonucleoprotein
core of the SRP, which is composed of the SRP54 (or Ffh) protein and the SRP
RNA (left) and the bacterial SRP receptor (right).

destination of a protein is dictated by its signal
sequence, which allows it to engage a specific
targeting machinery; (b) targeting machineries
cycle between the cytosol and membrane,
acting catalytically to bring cargo proteins to
translocation sites at the target membrane; and
(c) targeting requires the accurate coordination
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Signal sequence: a
transferable, cis-acting
element on the nascent
polypeptide that
engages protein-
targeting machineries
and mediates proper
localization of the
protein

RNC:
ribosome·nascent
chain complex

SR: signal recognition
particle receptor

Translocon: a protein
complex that mediates
the translocation or
integration of proteins
in the membrane
bilayer; used
interchangeably with
translocation
machinery and
translocase

GTPase: guanosine
5′-triphosphate (GTP)
hydrolase

ATPase: adenosine
5′-triphosphate (ATP)
hydrolase

Twin-arginine-
translocase (Tat):
a system composed of
TatA, TatB, and TatC
proteins that can
transport folded
proteins across the
membrane

Heat shock protein
70 (Hsp70): a family
of ubiquitously
expressed, 70-kDa
molecular chaperones
that facilitate protein
folding and biogenesis

of multiple dynamic events, including cargo
loading/unloading, targeting complex assem-
bly/disassembly, and the productive handover
of cargo from the targeting to the translocation
machinery. Not surprisingly, such molecular
choreography requires energy input, which
is often harnessed by GTPase or ATPase
modules in the targeting machinery. Below, we
discuss recent advances in our understanding
of the molecular mechanisms that underlie
these key events in the SRP pathway.

MOLECULAR INTERACTIONS
AND REGULATION OF THE
SRP CORE

Cargo Recognition by the SRP

Timely recognition of signal sequences by the
SRP is essential for proper initiation of cotrans-
lational protein targeting. Signal sequences that
engage the SRP are characterized, in general,
by a core of 8–12 hydrophobic amino acids that
preferentially adopts an α-helical structure (27,
28). Cross-linking and phylogenetic analyses
have implicated the M domain of Ffh/SRP54
in binding the signal sequence (29–31). The
unusually high methionine content of this
domain further led to a methionine bristle
hypothesis, in which the flexible methionine
side chains provide a hydrophobic environment
with sufficient plasticity to accommodate a
variety of signal sequences (10). In support of
this model, crystallographic analyses of Ffh
(16) and SRP54 signal-peptide fusions (15, 32)
showed that the signal sequence binds to a
groove in the Ffh/SRP54 M domain composed
almost exclusively of hydrophobic residues.
Two different modes of signal-peptide docking
were observed (15, 32); this is probably owing
to the different signal sequences used in the
two studies and supports the notion that signal-
sequence interaction with the M domain is
quite flexible. A conserved, flexible finger loop
connects the α1 and α2 helices that line the
bottom of the signal sequence binding groove.
This loop may act as a flexible flap that closes
upon the signal sequence (16, 33, 34), although
there is currently no direct evidence for this

model. Intriguingly, mutations in this loop
disrupt the interaction between the SRP and
SR GTPases and the unloading of RNC to the
translocon (35, 35a), suggesting that it plays a
role beyond that of facilitating signal-sequence
recognition. How the fingerloop promotes
these downstream steps in the pathway remains
to be determined.

Despite these interactions, the SRP binds
isolated signal sequences weakly, with dissoci-
ation constants (Kd) in the micromolar range
(36, 37). In comparison, RNCs containing no
signal sequences or even empty ribosomes bind
the SRP with Kd values of 80–100 nM (38–
40). Thus, the ribosome makes a significant
contribution to the recruitment of the SRP.
The binding site of the SRP on the ribosome
was identified by cross-linking studies (41, 42)
and cryoelectron microscopy (cryo-EM) recon-
structions of the RNC·SRP complex in both the
eukaryotic and bacterial systems (43–45). To-
gether, these results show that basic residues on
the tip of the Ffh N domain contact ribosomal
proteins L23 and, to a lesser extent, L29 (L23a
and L35 in eukaryotes, respectively) in the
vicinity of the ribosomal exit site (Figure 2a). In
the cryo-EM structure, the M domain also con-
tacts ribosomal RNAs and perhaps ribosomal
proteins L22 and L24, although these contacts
need to be verified biochemically. These ribo-
somal contacts, together with the interaction
of the Ffh/SRP54 M domain with the signal se-
quence, allow the SRP to bind its correct cargos
with sub- to low-nanomolar affinity (38–40, 46).

Membrane Localization
of the SRP Receptor

Bacterial SR is a single protein, FtsY, that lacks
a bona fide transmembrane (TM) domain. The
results of microscopy (47, 48), cell fractionation
(49), and in vitro binding experiments using
synthetic liposomes (19, 50, 51) indicate that
the interaction of FtsY with the bacterial inner
membrane is weaker and more dynamic com-
pared to those of integral membrane proteins.
Although the N-terminal A domain may medi-
ate FtsY’s membrane association, recent studies
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a b
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Figure 2
(a) A molecular model for interaction of the bacterial signal recognition particle (SRP) with the translating
ribosome [gray; Protein Data Bank (PDB) 2J28], derived from cryoelectron microscopy reconstruction and
docking of the crystal structures of individual protein fragments as described in Reference 44. The M and
NG domains of the SRP are in dark and light blue, respectively, the SRP RNA is in red, and the signal
sequence is in magenta. (b) Crystal structure of the bacterial FtsY (NG+1) construct (PDB 2QY9; green)
highlighting its lipid-binding helix at the N terminus (orange). Adapted from Reference 51.

Guided entry of
tail-anchored
proteins (GET): a
pathway that mediates
the posttranslational
targeting of
tail-anchored
membrane proteins to
the endoplasmic
reticulum membrane

Cotranslational
targeting: a mode of
protein targeting in
which the nascent
protein is delivered
while still attached to
the translating
ribosome

show that FtsY(NG+1), in which only Phe196
immediately preceding the NG domain is
retained, is sufficient to sustain lipid binding
of FtsY and cotranslational protein targeting
in vivo and in vitro (19, 51–53). Similar obser-
vations were made with the chloroplast FtsY
homolog (54). Comparison of the crystal struc-
ture of FtsY(NG+1) with that of FtsY-NG (19,
55) showed that Phe196 induced folding of an
amphiphilic α-helix rich in basic residues at the
junction between the A and N domains, and
the induced α-helix provides FtsY’s primary
lipid-binding motif (Figure 2b, orange).

This structure, together with in vitro bind-
ing studies, also showed that FtsY preferentially
binds the anionic phospholipids phosphatidyl-
glycerol (PG) and cardiolipin (CL) (19, 50, 51).
This preference is corroborated by experiments
in vivo in which overexpression of genes in-
volved in PG and CL biosynthesis rescued an
FtsY mutant defective in lipid binding (56). An-
ionic phospholipids also preferentially interact
with and activate the SecYEG machinery (57)
and the SecA ATPase (58, 59) and stimulate
the integration and export of membrane and
secretory proteins (60–62). Together, these ob-
servations suggest that sites of bacterial inner

membrane enriched in anionic phospholipids
could constitute active zones for protein target-
ing and translocation, an attractive hypothesis
that awaits to be tested.

In addition to lipid interactions, a direct in-
teraction of FtsY with SecYEG would provide
an attractive mechanism to more precisely lo-
calize the targeting complex to the translocon.
Recent cross-linking and copurification studies
provided evidence for this interaction (63, 64).
Subsequent cross-linking and mutational stud-
ies further showed that the A domain of FtsY
and the cytosolic loops of SecYEG connecting
TMs 6–7 and TMs 8–9 (termed C4 and C5
loops in prokaryotes and L6/7 and L8/9 loops in
eukaryotes) participate in this interaction (20,
64, 65). Nevertheless, several puzzling observa-
tions remain. Given the low sequence conserva-
tion of the FtsY A domain and its dispensability
for cotranslational targeting, it is unclear to
what extent this domain helps facilitate the
targeting reaction. The NG domain of FtsY
may also interact with SecYEG (65), but direct
evidence for this interaction remains to be ob-
tained. Most importantly, the SecYEG C4 and
C5 loops that interact with FtsY are also crucial
for its interaction with the ribosome (65),
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P-loop GTPase fold:
the most populous
protein fold in
nucleotide hydrolases
that uses the binding
and hydrolysis of GTP
to regulate cellular
functions

Switch II loop: a
structural segment in
Ras-type signaling
GTPases that interacts
with effector proteins
and moves upon GTP
hydrolysis

suggesting that the interaction of FtsY with
SecYEG is transient and must be broken to
allow for stable docking of RNC onto the
SecYEG machinery. The timing, mechanism,
and precise roles of the FtsY-SecYEG inter-
action remain challenging questions for future
studies.

Eukaryotic SR is a heterodimeric complex
consisting of the α and β subunits (66). SRα

is a soluble protein highly homologous to
FtsY. Instead of the A domain, SRα contains
an N-terminal X domain that dimerizes with
SRβ, an integral membrane protein, thus
localizing SRα to the ER membrane (67). SRβ

also contains a GTPase domain that, unlike
the two GTPases in the SRP and FtsY/SRα

described below, is most homologous to the
ADP ribosylation factor family of GTPases
(67, 68). Intriguingly, stable SRα-β association
requires SRβ to be bound with GTP (67), and
the Sec61β subunit of the Sec61p complex
could accelerate GDP dissociation from SRβ

(69), suggesting that Sec61β potentially serves
as a nucleotide exchange factor that maintains
SRβ in the GTP-bound state active for binding
SRα. A split ubiquitin assay demonstrated the
direct interaction of SRβ with the yeast Sec61p
homolog, Ssh1p, in vivo (70); disruption of
this interaction impairs cotranslational protein
targeting and cell growth (71). These results
suggest functional interactions of the eukary-
otic SR with the Sec61p translocon that parallel

findings with the bacterial FtsY, showing that
the membrane localization of the eukaryotic
SR may be subject to more complex regulation.

Regulation of Protein Targeting by
the SRP and SRP Receptor GTPases

At the membrane, the SRP and SR meet and
interact with each other through their GTPase
modules. Both proteins contain a central G
domain that shares homology with the classic
P-loop GTPase fold (55, 72). Unique to the
SRP and SR GTPases is an additional β-α-β-α
insertion box domain (IBD) in which a flexible
IBD loop (red in Figure 3a) contains multiple
catalytic residues and provides an equivalent of
the switch II loop in Ras-type GTPases (55, 72).
In addition, a four-helix bundle preceding the
GTPase fold forms the N domain, which to-
gether with the G domain composes a structural
and functional unit termed the NG domain
(Figure 2). Unlike classic signaling GTPases
that exert regulation by switching between a
GTP-bound, active state and a GDP-bound,
inactive state (73, 74), the SRP and SR repre-
sent a novel class of GTPases whose activities
are regulated by nucleotide-dependent dimer-
ization cycles (75). Members of this family also
include FlhF, MinD, MnmE, the septins, Toc
proteins, human guanylate binding protein-1,
and the dynamin family of GTPases (75–78).
In the past decade, mechanistic studies of the

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 3
Conformational changes in the signal recognition particle (SRP) and SRP receptor (SR) GTPases ensure the efficiency and fidelity of
protein targeting. The steps are numbered to be consistent between panels (a) and (b). The Ffh and FtsY NG domains are in blue and
green, respectively. T and D denote GTP and GDP, respectively. (a) (Middle) A series of discrete rearrangements drives the SRP·SR
GTPase cycle and is regulated by the cargo and target membrane. ⊥ denotes the pausing effect of cargo in disfavoring the
conformational rearrangements. (Right) molecular model of the early intermediate [Protein Data Bank (PDB) 2XKV]. (Bottom)
Cocrystal structure of the Ffh-FtsY NG domain complex in the closed/activated conformation (PDB 1RJ9). The two GTP analogs are
in a space-filling model. (Left) Zoom of the composite active site formed at the dimer interface required for GTPase activation, with the
GMPPCP molecules from Ffh and FtsY in blue and green, respectively, active site Mg2+ in magenta, nucleophilic waters (W) in blue,
and catalytic residues in the insertion box domain (IBD) loops in red. Adapted from Reference 84. (b) GTPase rearrangements provide
the driving force and ensure the fidelity of protein targeting. In Step 1, a ribosome·nascent chain complex with a signal sequence
(magenta) binds the SRP. In Step 2, the cargo-loaded SRP forms a stabilized early targeting complex with FtsY. In Step 3, membrane
association of FtsY drives rearrangement to the closed state, which weakens the SRP’s affinity for the cargo. In Step 4, interaction of SR
with SecYEG may drive GTPase rearrangements to the activated state required for cargo handover. In Step 5, the cargo is unloaded
from the SRP onto SecYEG, and GTP hydrolysis drives the disassembly and recycling of the SRP and SR. At each step, the cargo can
be either retained in (black arrows) or rejected from (red arrows) the SRP pathway. Adapted from Reference 40.
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bacterial SRP and SR GTPases have elucidated
the biological logic and regulatory mechanism
for these twin GTPases, which could provide
general principles for understanding other
members of this GTPase family.

Free Ffh and FtsY exhibit minor struc-
tural differences in the apo, GDP-, and GTP-
bound states (55, 72, 79–82). Even with GTP
bound, both GTPases by themselves are in

an inactive open conformation, exhibiting fast
nucleotide dissociation and exchange rates as
their nucleotide-binding pocket is wide open
(Figure 3a) and low basal GTPase activity as
their catalytic loops are not correctly positioned
(83). Their GTPase cycle is driven by a series of
conformational changes during their dimeriza-
tion that culminate in reciprocal GTPase ac-
tivation (Figure 3; 84). GTPase assembly is

a

b
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initiated with a transient early intermediate,
which forms rapidly but is highly unstable (Kd

∼ 4–10 μM; Figure 3, step 2) (85). This in-
termediate lacks stable contacts between the
G domains of Ffh and FtsY and is primarily
stabilized by electrostatic attractions between
their N domains (Figure 3a, right panel) (86,
87). Subsequent GTP-dependent rearrange-
ments, primarily involving readjustments at
the intramolecular G-N domain interface (17,
18, 88, 89) and removal of an inhibitory N-
terminal helix (90–92), lead to the formation
of a stable closed complex in which extensive
stereospecific interactions form between the G
domains of both proteins (Kd ∼ 16–30 nM;
Figure 3a, step 3 and lower panel). Two pairs
of hydrogen bonds form across the dimer in-
terface through the 3′-OH of one GTP and
the γ-phosphoryl oxygen of the other; these
further stabilize the GTPase dimer (17, 18).
The final GTPase activation step involves lo-
cal rearrangements of the IBD loops, which
must be brought into close proximity to the
GTP molecules to form an activated complex
(Figure 3a, step 4). Each IBD loop pro-
vides at least three catalytic residues (Asp135,
Arg138, and Gln148 in Ffh and their homolo-
gous residues in FtsY) that coordinate the nu-
cleophilic water, the γ-phosphoryl oxygen, and
the active site Mg2+, forming a composite active
site conducive to hydrolyzing GTP (Figure 3a,
left panel) (17, 18, 89). Following hydrolysis,
the SRP·FtsY complex is much less stable and
quickly disassembles (Figure 3a, step 5; 83, 93).

Importantly, each of the GTPase rearrange-
ments during the dimerization and activation
of the SRP and FtsY provides a discrete
regulatory point at which they can sense and
respond to the presence of the RNC and target
membrane, thus allowing the loading of cargo
on the SRP to be tightly coupled to its delivery
to the membrane. For example, with free SRP
and FtsY, assembly of a stable closed complex
is extremely slow (kon ∼102–103 M−1s−1) (36,
83, 94) and insufficient to sustain the protein-
targeting reaction. The RNC, by stabilizing
the early intermediate more than 100-fold
and preventing its premature disassembly,

accelerates stable SRP·FtsY assembly 103-fold
(95). Analogously, phospholipid membranes,
by helping to preorganize FtsY into the closed
conformation, accelerate GTPase assembly
160-fold (51, 96, 97). These allosteric regu-
lations ensure the rapid delivery of cargo to
the membrane and minimize futile cycles of
interactions between the free SRP and SR.

Intriguingly, the RNC also disfavors the
rearrangement of the GTPase complex to
the closed and activated states and delays
GTPase activation in the targeting complex
(40, 95). This generates a highly stabilized
early targeting intermediate in which the RNC
is predicted to bind the SRP with picomolar
affinity while GTP hydrolysis is paused (95).
These effects are highly beneficial in preventing
abortive reactions at early stages of targeting;
however, they pose serious challenges for
the cargo unloading and GTPase activation
events at later stages. Multiple observations
strongly suggest that the resolution to this
problem lies in part in the subsequent GTPase
rearrangements to the closed and activated
states, which help switch the targeting complex
from a cargo-binding to a cargo-releasing
mode. The interaction of cargo with the SRP is
predicted to weaken ∼400-fold when the early
targeting complex rearranges to the subsequent
conformational states (95). Further, mutant
GTPases that block the closed → activated
rearrangement appear to block the engage-
ment of cargo with the translocon (98). Finally,
cross-linking and cryo-EM analyses showed
that in the presence of SR and GTP analogs,
the NG domain of the SRP becomes mobile
and detaches from L23 (42, 99). Importantly,
anionic phospholipid membranes can induce
these late GTPase rearrangements (Figure 3,
step 3; 51), suggesting an attractive mechanism
to spatially couple the membrane delivery of
RNCs to their subsequent unloading.

Collectively, these results provide a coher-
ent picture of how the unusual GTPase cycle
of the SRP and SR provides exquisite spatial
and temporal coordination of protein targeting
(Figure 3b). GTPase assembly is minimized
in the absence of biological cues but is
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initiated when the SRP is loaded with RNCs
bearing strong signal sequences (Figure 3b,
steps 1–2). But in the absence of the target
membrane, the RNC·SRP·SR complex is
primarily stalled in the early conformational
stage, in which the cargo is tightly bound to
the SRP and GTP hydrolysis is delayed. Inter-
action of FtsY with phospholipid membranes
helps relieve this pause and induce the GTPase
rearrangements into the closed/activated
states, in which the interaction of the ribosome
with the SRP is weakened and the RNC can
be more readily released from the targeting
complex (step 3). What ultimately drives the
completion of the cargo handover event and
reactivates GTP hydrolysis (steps 4–5) is still
unclear, although the SecYEG translocon
provides an attractive candidate. Finally, GTP
hydrolysis drives the disassembly and recycling
of the SRP and SR, allowing them to initiate
new rounds of protein targeting.

Fidelity of the SRP: Binding, Induced
Fit, and Kinetic Proofreading

Like other topogenic sequences that mediate
protein localization, SRP signal sequences are
highly divergent (27, 28, 100, 101), and the
SRP must be sufficiently flexible to accom-
modate this diversity. Nevertheless, the SRP
must also remain highly specific to its sub-
strates to minimize the mislocalization of pro-
teins, which would be detrimental to cells.
How the SRP or any protein-targeting ma-
chinery faithfully selects its correct substrates
has been a challenging question. Although pre-
vious work has focused on the observation
that the SRP binds weakly to the incorrect
cargos bearing no or weak signal sequences
(Figure 3b, red arrow a), quantitative biophysi-
cal measurements show that the SRP binds with
substantial affinity to the incorrect cargos or
even the empty ribosome (Kd ∼ 80–100 nM;
38–40). Given the cellular SRP concentration
(∼400 nM in bacteria), it appears unlikely that
the discrimination in the cargo-binding step is
sufficient to reject all the incorrect cargos.

A quantitative dissection of the individ-
ual molecular events in the bacterial SRP

pathway (Figure 3b) demonstrates that the
multiple conformational rearrangements in
the SRP·FtsY GTPase complex provide a
series of additional checkpoints to further
reject the incorrect cargos (40). These include:
(a) formation of the early intermediate, which
is stabilized more than 100-fold by the correct,
but not incorrect, cargos (Figure 3b, red arrow
b); (b) rearrangement of the early intermediate
to the closed complex, which is ∼10-fold faster
with the correct rather than the incorrect cargos
(Figure 3b, red arrow c); and (c) GTP hy-
drolysis by the SRP·FtsY complex, which
is delayed ∼8-fold by the correct cargo to
give the targeting complex a sufficient time
window to identify the membrane translocon.
In contrast, GTP hydrolysis remains rapid
with the incorrect cargo (t1/2 < 1 s), which
could abort the targeting of incorrect cargos
(Figure 3b, red arrow d). A mathematical simu-
lation based on the kinetic and thermodynamic
parameters of each step strongly suggests that
all these fidelity checkpoints are required to
reproduce the experimentally observed pattern
of substrate selection by the SRP (40).

These results support a novel model in
which the fidelity of protein targeting by the
SRP is achieved through the cumulative effect
of multiple checkpoints by a combination of
mechanisms, including cargo binding, induced
SRP-SR assembly, and kinetic proofreading
through GTP hydrolysis. Additional discrim-
ination could come from the SecYEG machin-
ery, which further rejects the incorrect cargos
(102). Analogous principles have been demon-
strated in the DNA and RNA polymerases (103,
104), the spliceosome (105), tRNA synthetases
(106), and tRNA selection by the ribosome
(107) and may represent a general principle
for complex biological pathways that need to
distinguish between correct and incorrect sub-
strates based on minor differences.

SRP RNA: A Central Regulator
of the SRP

Besides the SRP54 (or Ffh) protein, the SRP
RNA is the only other universally conserved
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and essential component of the SRP (108).
However, its precise roles in protein targeting
have remained enigmatic. In early biochemi-
cal reconstitutions of the mammalian SRP, the
SRP RNA appeared to be nothing more than
a scaffold that holds different SRP protein sub-
units together (Figure 5). The discovery of the
bacterial SRP RNA (109), which binds a single
protein Ffh, implied a much more active role for
this RNA. Recent biochemical and structural
studies strongly support this view and show that
the SRP RNA can mediate global reorganiza-
tion of the SRP in response to cargo binding
and provide additional interactions with the SR,
thus mediating the molecular communication
between the cargo and the SRP/SR GTPases
during protein targeting.

The bacterial 4.5S SRP RNA contains the
most conserved domain IV of the SRP RNA and
forms an elongated hairpin structure capped by
a highly conserved GGAA tetraloop at one end
(Figure 4a). Two internal loops, A and B, me-
diate binding of this RNA to a helix-turn-helix
motif in the M domain of Ffh with picomolar
affinity (14, 110). In contrast, the orientation
of the M domain/RNA complex relative to the
Ffh NG domain exhibits a high degree of vari-
ability. Crystallographic analyses and structural
mapping studies have generated at least four
different structures or structural models of the
SRP, each exhibiting a distinct interdomain ar-

rangement (see Figure 4b for two examples;
16, 33, 34, 111–113). Collectively, these obser-
vations suggest that apo-SRP could exist in a
variety of global conformations, likely due to
the 30 amino acid–long flexible linker connect-
ing the M and NG domains of Ffh.

Upon binding the RNC, the SRP undergoes
a global conformational change (Figure 4c; 44,
45, 114). The bidentate interaction of the RNC
with Ffh reorients its M and NG domains
such that the SRP RNA now lies parallel to
the ribosome surface with its GGAA tetraloop
positioned adjacent to the FtsY-interacting
surface on the Ffh NG domain (Figure 4c).
This is important, as the RNA tetraloop is re-
quired for rapid assembly of a stable SRP·FtsY
complex (83, 85, 94, 115, 116). More recent
kinetic and phylogenetic analyses (117), hy-
droxyl radical footprinting experiments (118),
and cryo-EM analysis (86) identified a key
electrostatic interaction between the SRP
RNA tetraloop and conserved basic residues
surrounding Lys399 on the lateral surface of
FtsY (Figure 4d ). This interaction stabilizes
the otherwise highly labile early intermediate,
thus accelerating stable SRP·FtsY assembly
102–103-fold (85, 117). Importantly, the RNA
tetraloop or FtsY Lys399 exerts these stimu-
latory effects only when the SRP is bound to
RNCs bearing strong signal sequences (117,
119) and, to a lesser extent, to a signal peptide

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 4
RNA-mediated global reorganization of the signal recognition particle (SRP) couples the GTPase cycle to
the cargo loading and unloading events during protein targeting. (a) Secondary structure of the Escherichia
coli 4.5S SRP RNA. The internal loops A–E, the GGAA tetraloop, and the distal site near the 5′, 3′ end of
this RNA are denoted. (b) The free SRP exists in a variety of latent conformations in which the SRP RNA
tetraloop is not positioned to contact the SRP receptor (SR). Two representative structures of the SRP from
Methanococcus jannaschii [left; Protein Data Bank (PDB) 2V3C] and Sulfolobus solfataricus (right; PDB 1QZW)
are shown. (c) Binding of the ribosome·nascent chain complex (RNC) induces the SRP into a more active
conformation, in which the SRP RNA tetraloop is properly positioned to interact with the G domain of the
incoming SR to form a stabilized early targeting complex, as shown in panel d . Both panels show the
molecular model derived from cryoelectron microscopy reconstructions of the RNC·SRP or
RNC·SRP·FtsY early complex; the ribosome is not shown for clarity. (e) GTPase activation is potentially
coupled to relocalization of the SRP·SR NG-domain complex to the distal end of the SRP RNA, a
conformation that is more conducive to cargo unloading (PDB 2XXA). The structures in panels b and c are
aligned with respect to the SRP54 NG domain, and the structures in panels c–e are aligned with respect to
the SRP RNA. Color codings are the same as in Figure 2.
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or signal peptide mimics (36). Combined with
structural analyses (32, 45, 86, 99), a coherent
model emerges in which the RNC optimizes
the conformation of the SRP so that the SRP
RNA tetraloop is prepositioned to interact
with the incoming FtsY, thus allowing rapid re-
cruitment of the SR to be achieved specifically
for the correct cargos (Figure 4b–d ).

Intriguingly, neither the SRP RNA
tetraloop nor FtsY Lys399 affects the equilib-
rium stability of the SRP·FtsY complex in the
closed/activated states (94, 117), suggesting
that their interaction is highly transient and
occurs only during the early intermediate
stage of GTPase dimer assembly. A recent
crystallographic study using full-length 4.5S
RNA (120) revealed a completely different
configuration of the SRP·FtsY complex in
which a closed/activated GTPase complex
docks at a distinct site near the 5′,3′ end of the
SRP RNA ∼100 Å away from the tetraloop
end (Figure 4a, distal site, and Figure 4e).
Mutations of the distal site compromised
GTPase activation in the SRP·FtsY complex,
supporting the importance of this alternative
RNA-GTPase interaction (120). Recently,
single-molecule fluorescence microscopy
experiments directly demonstrated that the
Ffh·FtsY NG-domain complex, after initial
assembly near the RNA tetraloop, relocalizes
to the opposite end of the SRP RNA, where its
GTPase activity is fully activated (121). In the
context of the protein-targeting reaction, this
movement is highly attractive as it removes
the GTPase complex from the ribosome exit
site, generating a conformation that allows
the RNC to be more easily released from the
targeting complex and the SecYEG complex
to more readily access the ribosome exit site
(Figure 4e). In addition, the unloading of
cargo could be tightly coupled to GTPase
activation in such a mechanism. Though still
at an early stage, these models are supported
by the observation that the movement of the
GTPase complex to the SRP RNA distal site is
directly activated by the SecYEG translocation
machinery (120a).

Transition from the Targeting to
Translocation Machinery

At the end of the protein-targeting reaction,
the RNC must be unloaded from the SRP·FtsY
complex onto the heterotrimeric SecYEG (or
Sec61p) translocation machinery. We refer the
readers to References 2, 121–123 for more
comprehensive reviews of this machinery. In
the context of the cotranslational targeting re-
action, studies in recent years have provided
rich structural information to explain how the
translocon interacts with the RNC and poten-
tially interfaces with the SRP-targeting ma-
chinery. A crystal structure of Methanococcus jan-
naschii SecYEβ (124) showed that TMs 1–10
of SecY form an hourglass-shaped pore in this
channel. Lining one side of this pore are TMs
2b and 7, which form the lateral gate where
hydrophobic signal sequences and TMs in the
nascent polypeptide bind and subsequently en-
ter the lipid bilayer (125–127). Cryo-EM re-
constructions of the RNC·SecYEG complex
(or its eukaryotic homologs) at increasing res-
olution (128–131), combined with biochemical
and genetic studies (132, 133), further identi-
fied the highly conserved basic residues in the
C4 and C5 (or L6/7 and L8/9) loops of SecY
as the key motifs that mediate interaction with
ribosomal proteins L23 and L35 at the exit site.

Remarkably, the binding sites of the
SecYEG/Sec61p complex on the translating
ribosome overlap extensively with those of the
SRP (Figure 2a). This raises challenging ques-
tions as to how the RNC is handed over from
the targeting to translocation machinery with-
out nonproductive loss of the translating ribo-
some. The most productive mechanism for the
cargo transfer event is probably through a con-
certed pathway in which the two contacts of the
SRP with the RNC, those with the L23/L35 ri-
bosomal proteins and with the signal sequence,
are sequentially dissolved and replaced by those
of the SecYEG machinery. Several observations
described earlier, including the loss of density
for the Ffh-FtsY NG-domain complex in cryo-
EM reconstructions of the targeting complex
(99), the ability of the NG-domain complex
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to relocalize to the SRP RNA distal end (120,
120a), and the requirement of GTPase re-
arrangements for detachment of SRP from the
ribosome (95, 98) provide clues that support
such a mechanism. The ability of the SR to
directly interact with the SecYEG/Sec61p
complex (64, 65, 69–71) further raises the pos-
sibility that the translocon plays an active role
in the cargo handover process. Nevertheless,
the cargo handover event remains the least un-
derstood aspect of the cotranslational targeting
reaction. The fate of the signal sequence in this
cargo handover event, their timing relative to
one another and to the hydrolysis of GTP, and
the molecular forces that drive this step remain
challenging questions for future investigations.

EUKARYOTIC SRP

Mammalian SRP: Additional Layers
of Complexity

Compared with its bacterial homolog, the
mammalian SRP is significantly larger and
more complex, comprising six proteins and a
7S SRP RNA (Figure 5). It can be divided into
two distinct domains: the S domain, compris-
ing domains II–IV of the 7S RNA and the SRP
19, 54, and 68/72 protein subunits, and the Alu
domain, comprising domain I of the 7S RNA
and the SRP 9/14 subunits (Figure 5). The in-
creased complexity adds additional layers of nu-
ance and regulation for the mammalian SRP,
many of which await to be elucidated.

For example, the mammalian SRP54 sub-
unit binds the 7S RNA weakly by itself. Indeed,
premature binding of SRP54 could cause the
two RNA-binding loops for SRP19 to misfold,
disrupting the native assembly of the SRP (134,
135). In vivo, assembly of the mammalian SRP
goes through an ordered pathway in which all
the SRP proteins except SRP54 are imported
to the nucleus to bind the SRP RNA; the
partially assembled SRP is then exported to the
cytoplasm for SRP54 binding, thus completing
its assembly (109, 136–138; see Reference 139
for a more complete review of SRP assembly).
In vitro reconstitutions showed that prebinding

of SRP19 to the 7S RNA is required for loading
the SRP54 subunit onto the SRP RNA (8, 140).
Crystallographic analyses showed that SRP19
bridges the two tetraloops in both domains III
and IV (or helices 6 and 8) of the 7S RNA and
preorganizes the internal loops in domain IV
into a conformation required for stable SRP54
binding (141–146; see Reference 147 for a
more complete review). Why the mammalian
SRP requires this additional layer of allostery
during its assembly remains unclear.

In addition, although much is known about
the binding sites of SRP68/72 on the 7S
RNA (148–153), the structure and precise
function of the SRP68/72 subunits remain to
be determined. Chemical-probing experiments
have suggested that SRP68/72 cooperates with
SRP19 to preorganize the 7S RNA into a con-
formation competent for SRP54 binding by ex-
posing the SRP54 binding sites on the 7S RNA
(144, 154). These subunits have also been im-
plicated in controlling the interaction of SRP54
with the SR (155). Direct evidence for both of
these models remains to be obtained.

The most interesting aspect of the mam-
malian SRP, aside from the core functions, is
the Alu domain (Figure 5) that arrests trans-
lation elongation just after the signal sequence
emerges from the ribosome. Early biochemical
work found that the SRP interacts with the
ribosome during elongation factor 2–catalyzed
translocation of tRNA (156), suggesting that
the SRP competes with elongation factors for
binding. Recent biochemical and cross-linking
studies further show that SRP9/14 electrostat-
ically interacts with ribosomal RNA via at least
two stretches of basic residues and also contacts
ribosomal proteins at the interface between
the large and small ribosomal subunits (157,
158). Consistent with this notion, cryo-EM
analysis showed that mammalian SRP forms
an elongated, kinked structure in which the
Alu domain reaches into the elongation factor
binding site at the ribosome subunit interface
(Figure 5b; 43). Although the elongation
arrest activity is not a prerequisite for protein
targeting in vitro, deletion of SRP9/14 in vivo
results in severe defects in protein targeting and
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Figure 5
Organization of the mammalian signal recognition particle (SRP). (a) Comparison of the RNA secondary
structure and composition of the mammalian and bacterial SRP. (b) Cryoelectron microscopy (cryo-EM)
reconstruction of the mammalian SRP bound to the ribosome·nascent chain complex (left; EMD-1063) and
molecular model of the mammalian SRP derived from the cryo-EM and docking of the crystal structures of
the individual proteins (right; Protein Data Bank 1RY1). The SRP54 M and NG domains are in dark and
light blue, respectively, SRP19 is in cyan, SRP9 is in brown, SRP14 is in orange, and the SRP68/72 complex,
which lacks a crystal structure, is represented as a gray sphere. The S and Alu domains of the SRP RNA are
in red and yellow, respectively.

mammalian cell growth (159). Together with
the observation that the SRP could not target
proteins when the nascent polypeptide exceeds
a critical length (39, 160), these results suggest
that elongation arrest provides a crucial time
window that allows the targeting complex to
engage the translocon before the nascent chain
loses translocation competence. The precise
mechanism and degree of elongation arrest

by the Alu domain and how it communicates
and/or cooperates with the S domain during
the targeting reaction remain to be elucidated.

Chloroplast SRP: A Unique
Posttranslational SRP

The cotranslational nature of the SRP pathway
is universally conserved except for in the
chloroplast in green plants, in which a unique
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Ribosome-bound
nascent chain complex
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Figure 6
(a) Similarity and differences between the bacterial (left) and chloroplast (right) signal recognition particle
(SRP) systems. The SRP54 M and NG domains, FtsY, and the SRP RNA are colored as in Figure 2. The
light-harvesting chlorophyll-binding protein (LHCP) is in green, and cpSRP43 is in magenta. The red
arrows denote the stimulatory effects of the SRP RNA (left) and the cpSRP54 M domain (right) on assembly
of the GTPase complex. (b) A molecular model of cpSRP43, obtained from small angle X-ray reconstructions
of its 3D shape (envelope; 183) and rigid-body docking of the structures of the chromodomain (CD)
1-ankyrin (1–4)-CD2 [Protein Data Bank (PDB) 3UI2] and CD3 (PDB 1X3P) fragments.

Light-harvesting
chlorophyll
a,b–binding proteins
(LHCPs): proteins
that form the antenna
complex on
photosynthetic centers
in green plants

Posttranslational
targeting: a mode of
protein targeting in
which a fully
synthesized nascent
protein is delivered
after release from the
ribosome

posttranslational SRP pathway has evolved.
Instead of delivering RNCs as its cargo, the
chloroplast SRP (cpSRP) is dedicated to the
delivery of the light-harvesting chlorophyll a,b–
binding proteins (LHCPs) from the chloroplast
stroma to the thylakoid membrane (Figure 6)
(161, 162). Analogous to the cytosolic SRP, the
cpSRP pathway is mediated by close homologs
of the SRP54 and SR GTPases, cpSRP54 and
cpFtsY, respectively (Figure 6) (162–165).
However, the cpSRP54 M domain lost the abil-
ity to bind the otherwise universally conserved
SRP RNA (166). Instead, a unique SRP subunit
in chloroplasts, cpSRP43, binds a C-terminal
extension in the cpSRP54 M domain to form
the cpSRP (Figure 6) (167, 168). As detailed
below, these changes likely reflect adaptation
of the cpSRP system to the posttranslational
targeting of LHCPs. In addition, another
pool of cpSRP43-free cpSRP54 was found in
stroma, which together with cpFtsY mediates
the cotranslational targeting of some of the
chloroplast-encoded membrane proteins, such
as D1 (169). We refer the readers to References
170–172 for comprehensive reviews of the
cpSRP. Here, we focus on valuable lessons that
came from comparison of the cpSRP with the
classic cytosolic SRP in recent years.

How does the cpSRP bypass the otherwise
strictly conserved SRP RNA? In cytosolic
systems, a major function of the SRP RNA is
to accelerate the interaction between the SRP
and FtsY GTPases and thus ensure the rapid
delivery of cargo. Kinetic analysis in the cpSRP
system showed that, even in the absence
of the SRP RNA, the cpSRP and cpFtsY
GTPases interact 400-fold faster than their
bacterial homologs (173). Subsequent crys-
tallographic (174, 175) and biochemical
cross-complementation (176) analyses revealed
two key molecular mechanisms underlying
this phenomenon: (a) Compared with bacterial
FtsY, the conformation of the cpFtsY NG do-
main more closely resembles that in the closed
SRP·FtsY complex, which may allow cpFtsY
to bypass some of the rearrangements required
for stable GTPase assembly (174, 175), and
(b) more importantly, the cpSRP54 M domain
functionally mimics the SRP RNA, accelerat-
ing its interaction with cpFtsY 100-fold and
allowing them to achieve an interaction rate
that matches the RNA-catalyzed interaction
between their bacterial homologs (Figure 6,
red arrows) (176). It is probable that, analogous
to the cytosolic SRP system, the interaction
between the cpSRP and cpFtsY GTPases is
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Chromodomain:
chromatin
organization modifier
domain, a highly
conserved protein
domain in eukaryotes
often involved in
chromatin remodeling

Ankyrin repeat:
a 33-residue protein
motif that folds
cooperatively with
neighboring repeats
and is one of the most
common protein
interaction motifs

AAA+ disaggregases:
a family of ATPases
associated with diverse
cellular activities that
mediate
ATP-dependent
remodeling of protein
aggregates

regulated by upstream and downstream com-
ponents of the pathway, such as the substrate
protein or the target membrane (177); these
allosteric regulations and their roles in the
cpSRP pathway remain to be uncovered.

The cpSRP43 subunit is responsible for
substrate recognition and enables the cpSRP
to adapt to the challenge of posttranslational
protein targeting. Unlike in the cotransla-
tional pathway, cpSRP must handle fully
synthesized, highly hydrophobic LHCPs that
are prone to aggregation and misfolding in
aqueous environments. Early work found
that LHCPs are effectively chaperoned in
the stroma, where they form a soluble transit
complex with the cpSRP (162, 164, 178–180),
although substrate capture by the cpSRP
may require additional factors, such as LTD
at the chloroplast envelope (181). Recent
biochemical dissections showed that cpSRP43
is necessary and sufficient for binding with
high affinity to LHCPs and maintaining them
in a soluble, translocation-competent state
(182, 183). cpSRP43 is composed of a unique
combination of protein-interaction motifs,
with three chromodomains (CDs) (184, 185)
and four ankyrin repeats (Ank1–4) sand-
wiched between CD1 and CD2 (Figure 6b)
(172, 186). The ankyrin repeat domain
specifically recognizes L18, a relatively po-
lar 18-amino acid motif between TM2 and
TM3 of LHCP (180, 187, 188). Crystal-
lographic analyses further showed that the
CD1-Ank4 fragment of cpSRP43 folds into an
elongated horseshoe structure (Figure 6b),
in which a groove across the concave surface
of Ank2 to 4 binds a highly conserved DPLG
turn in the L18 peptide (189), enabling specific
recognition of LHCPs by cpSRP43. As a
molecular chaperone, cpSRP43 likely also
interacts with and shields the hydrophobic
TMs in LHCPs, although the molecular basis
of these interactions remains to be deciphered.
Finally, recent work found that even after
LHCPs had already aggregated, cpSRP43
can resolubilize the aggregate and return
them to soluble fractions in vitro (182, 183).
This disaggregase activity was unexpected, as

cpSRP43 lacks ATPase domains and hence
must use a mechanism distinct from that of
the well-studied AAA+ disaggregases (190).
This finding demonstrated the capability and
diversity of chaperone function during post-
translational membrane protein targeting. The
molecular basis underlying cpSRP43’s disag-
gregase activity and its precise roles in LHCP
biogenesis in vivo remain to be determined.

At the thylakoid membrane, the cpSRP and
cpFtsY deliver LHCPs to the Alb3 translocase
(see more discussion of this translocase in SRP-
Dependent Targeting to Other Translocons,
below). Recently, biochemical studies (191,
192) and in vivo complementation analyses
(193, 194) showed a direct interaction between
cpSRP43 and the C-terminal stromal domain
of Alb3. The molecular mechanism underlying
this interaction and its precise roles in the
targeting and integration of LHCP remain
unclear. Nevertheless, this interaction is highly
attractive, as it provides a mechanism to
accurately localize the targeting complex to the
Alb3 translocase and to couple the membrane
delivery of LHCP to its subsequent integra-
tion. Lessons learned from this system could be
leveraged to help understand the mechanism of
cargo unloading in the cytosolic SRP pathway.

NEW FRONTIERS

Molecular Code of the
Signal Sequence

Early pioneering work has identified a hy-
drophobic core as the major determinant
of signal sequences that mediate protein
secretion, facilitated by basic amino acids at
the N terminus in some cases (27, 28). The
propensity to adopt α-helical structures in
apolar media has also been identified as an
important determinant of the signal sequence
(195, 196). However, subsequent work revealed
additional layers of complexity. First, multiple
pathways mediate protein secretion in bacteria
and yeast, and signal sequences also specify the
targeting pathway (Figure 1a) (101). Second,
although a threshold level of hydrophobicity
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Nascent
chain–associated
complex (NAC): a
heterodimeric complex
that binds eukaryotic
ribosomes in close
proximity to the
emerging nascent
protein

in signal sequences was generally thought to
specify the SRP pathway, more recent studies
in bacteria (197) and yeast (198) indicated that
the correlation between hydrophobicity and
SRP-dependent targeting is poor, and signal
sequences with hydrophobicity above the
apparent threshold failed to engage the SRP
(197). Third, special N-terminal extensions of a
strong SRP signal sequence, such as those found
in the bacterial autotransporter EspP, can allow
nascent proteins to escape the SRP pathway
(40, 199). Apparently, additional molecular
features of the signal sequence, including
helical propensity (195, 196), the presence of
N-terminal basic residues (28, 200), and other
properties, play important roles that have yet
to be identified. How the information from all
the different features is integrated to compose
the molecular code that specifies the SRP
remains unclear. Crucial to the effort to decode
the signal sequence will be the availability of
a more comprehensive catalog of validated
SRP-dependent versus SRP-independent
substrates, which would allow more systematic
analyses of the molecular features of signal
sequences and evaluation of their respective
contributions to recognition by the SRP.

The Crowded Ribosome Exit Site

Accumulating data now indicate that the ribo-
some exit site is a crowded environment where
multiple protein biogenesis factors interact. As
a newly synthesized protein emerges from the
ribosomal exit tunnel, it interacts with a host
of cellular factors that facilitate its folding,
localization, maturation, and quality control.
These include molecular chaperones such as
trigger factor (TF) in bacteria, Hsp70 (DnaK/J
in bacteria), and the nascent chain–associated
complex (NAC) in yeast; modification and pro-
cessing enzymes such as methionine aminopep-
tidase (or peptide deformylase in bacteria), N-
acetyltransferase, and arginyl transferase; and
protein-targeting and translocation machiner-
ies such as the SRP and SecYEG (1, 201, 202).
Even posttranslational targeting factors, such

as SecA (203) and the Bag6 complex (204), were
recently reported to interact with the RNC.
Many of these factors, including the SRP,
SecYEG, TF, and SecA, contact the ribosome
via the same protein, L23 (or Rpl25 in eu-
karyotes) (205), and recognize hydrophobic
sequences on the nascent polypeptide. It is
currently unclear whether and how these
factors compete or cooperate with one another
for binding the translating ribosome (198,
206–211). Further, the molecular mechanisms
by which a nascent protein is sorted among
different cotranslational factors and committed
to the correct biogenesis pathway remain key
questions for future investigations.

Signaling from Inside the Ribosome

Most previous models assumed that binding of
the SRP or other cellular machineries to the
RNC occurs when signal sequences become
exposed outside the ribosome. This view was
initially challenged by the observation that the
opening and closing of the Sec61p translocon
are regulated by TMs in the nascent protein
from inside the ribosome (212). More recently,
multiple biochemical and cross-linking studies
showed that, even when a signal sequence is still
within the ribosome and has not emerged out-
side the exit tunnel, its presence enhances the
binding of SRP to the RNC (38, 213) and helps
recruit a regulatory protein, RAMP4, to the
Sec61p translocon (214). Further, in the GET
pathway, the Bag6 complex is specifically re-
cruited to the RNC when the C-terminal TM
of the nascent protein emerges inside the ribo-
some (204). These results suggest that sequence
or structural features of the nascent polypep-
tide inside the ribosome provide signals that
can be transmitted to the ribosome and lead
to the recruitment of cellular factors. The na-
ture of the structural changes in the ribosome
that underlie these signaling events, the mech-
anisms ensuring the specificity of these signals,
and their precise roles in the respective cellu-
lar pathway are important questions for future
studies.
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SRP-Dependent Targeting
to Other Translocons

Although SecYEG (or Sec61p) is a central
protein-conducting channel where many co-
and posttranslational pathways converge,
membrane insertion of a subset of proteins
requires the translocase YidC, a member of
the YidC/Oxa1/Alb3 family of proteins that
facilitate the insertion and assembly of mem-
brane proteins (see References 215–217 for
more comprehensive reviews). Although some
of YidC’s functions are carried out through
cooperation with the SecYEG machinery
(218), increasing evidence shows that YidC can
act independently of SecYEG to mediate the
insertion of several proteins, including phage-
procoat proteins (219, 220), the mechanosen-
sitive channel MscL (221, 222), and subunit c
of the F1F0 ATP synthase (223, 224). In many
studies, the targeting of MscL and the F1F0

subunits to YidC appears to depend on the co-
translational SRP/FtsY machinery (225–227).
As noted earlier, the cpSRP targets LHCPs to
Alb3, the YidC homolog in chloroplasts. The
structure (228, 229) and mechanism of YidC as
an independent membrane protein insertase,
how it interacts with the ribosome and the
nascent polypeptide, and how it interfaces
with the SRP-targeting machinery remain to

be determined. The decision-making process
that allows the SRP to route a subset of its
substrate proteins to the YidC instead of the
SecYEG translocon also needs elucidation and
will likely reveal additional layers of nuance
and regulation in this pathway.

Translation-Independent Targeting
of Membrane Proteins

Although targeted delivery of membrane
proteins based on signals embedded in the
nascent polypeptide has been long established,
a recent study provided evidence for an alter-
native pathway(s) that localizes proteins to the
target membrane in a translation-independent
manner based on cis-acting elements in the TM
domain–encoding sequences of the mRNA
(230). Codons for hydrophobic amino acids
in the TM domains were hypothesized to
be highly enriched in uracil content, which
could provide a distinctive signature for these
mRNAs to enable their recognition and
targeted delivery to the membrane (231).
The components, pathways, and mecha-
nisms of translation-independent targeting of
membrane proteins and the contribution of
these pathways to proper membrane protein
localization within cells remain open questions.

SUMMARY POINTS

1. The SRP and SR catalyze the cotranslational delivery of membrane and secretory proteins
to translocation machineries on the target membrane.

2. Signal sequences allow nascent proteins to engage the correct cellular biogenesis ma-
chinery and thus be directed to their proper cellular destination.

3. The SRP recognizes its cargos through bidentate interactions with the signal sequence
and the ribosome. Likewise, the SR localizes to the target membrane through bidentate
interactions with the phospholipid membrane and the SecYEG/Sec61p translocon.

4. Two homologous GTPases in the SRP and SR use a unique GTPase cycle to drive and
regulate the capture, delivery, and unloading of cargo during protein targeting. They
represent a growing class of dimerization-activated GTPases.

5. The fidelity of substrate selection by the SRP is achieved through a combination of
binding, induced fit, and kinetic proofreading mechanisms.

710 Akopian et al.

A
nn

u.
 R

ev
. B

io
ch

em
. 2

01
3.

82
:6

93
-7

21
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

b-
on

: U
ni

ve
rs

id
ad

e 
de

 L
is

bo
a 

(U
L

) 
on

 1
1/

12
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



BI82CH25-Shan ARI 15 May 2013 19:0

6. The SRP RNA orchestrates global reorganization of the SRP, which enables rapid SRP-
SR GTPase assembly in response to cargo binding.

7. The eukaryotic SRP contains an additional Alu domain that arrests translation elongation,
which may provide a longer time window for the SRP to complete the targeting reaction
in larger eukaryotic cells.

8. The chloroplast SRP is dedicated to the delivery of fully synthesized LHCPs and has
evolved unique molecular strategies to meet the challenges of posttranslational membrane
protein targeting.

FUTURE ISSUES

1. How is the translating ribosome productively handed over from the targeting to the
translocation machinery?

2. What are the molecular codes that comprise the signal sequence?

3. How are nascent proteins sorted among the myriad of protein biogenesis factors at the
ribosome exit site and committed to the correct biogenesis pathway?

4. Does a nascent polypeptide inside the ribosome tunnel signal the ribosome to recruit
specific factors, and if so, how?

5. How does the SRP route a subset of its substrates to the YidC or other membrane
translocases instead of to SecY/Sec61p?

6. Does information embedded in the mRNA direct proteins to the membrane, and if so,
how?
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24. Fröbel J, Rose P, Müller M. 2012. Twin-arginine-dependent translocation of folded proteins. Philos.
Trans. R. Soc. Lond. B. 367:1029–46

25. Hegde RS, Keenan RJ. 2011. Tail-anchored membrane protein insertion into the endoplasmic reticu-
lum. Nat. Rev. Mol. Cell Biol. 12:787–98

712 Akopian et al.

A
nn

u.
 R

ev
. B

io
ch

em
. 2

01
3.

82
:6

93
-7

21
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

b-
on

: U
ni

ve
rs

id
ad

e 
de

 L
is

bo
a 

(U
L

) 
on

 1
1/

12
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



BI82CH25-Shan ARI 15 May 2013 19:0
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NOTE ADDED IN PROOF

Although it has long been recognized that the cpSRP in higher green plants has lost the SRP
RNA, a recent study by Trager et al. (232) identified multiple species in green and blue algae,
as well as in lower green plants, in which the SRP RNA is still an integral part of the cpSRP.
The cpSRP from these species likely represents evolutionary intermediates via which the ancient
cotranslational SRP evolved to the RNA-less cpSRP for posttranslational targeting of proteins.
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